For personal use only.

Metabolic syndrome (MetS) refers to a particular cluster of metabolic abnormalities (hypertension, dyslipidemia, type 2 diabetes, and visceral fat deposition) that can lead to a 1.5- to 2-fold increased relative risk of cardiovascular disease. Various combinations of healthier eating patterns and increased physical activity have been shown to improve metabolic abnormalities and reduce MetS prevalence. Dietitians who counsel MetS patients are challenged to integrate guidance to various medical management guidelines and research studies with effective behavioural change strategies and specific advice on what food and eating pattern changes will be most effective, feasible, and acceptable to clients. As part of a demonstration project that is currently underway, we developed a care map (decision aid) that represents the key decision processes involved in diet counselling for MetS. The care map is based on evidence from both clinical and health behaviour change studies and expert consensus and has undergone limited dietitian review. It is being used to help project dietitians clearly articulate their specific food intake change goals. Additional studies to directly compare counselling strategies could inform future development of the care map. In the meantime, dietitians may find this care map helpful in clarifying counselling goals and strategies in this client group.

ABSTRACT

Metabolic syndrome (MetS) refers to a cluster of common abnormalities consisting of at least three of the following: elevated waist circumference, high blood pressure, high fasting glucose, high triglycerides, and/or low HDL-cholesterol [1]. The presence of MetS leads to a 1.5- to 2-fold increased relative risk of cardiovascular disease (CVD) [2] beyond that expected from a typical Framingham Risk Score calculation [3].
In Canada, the prevalence of MetS is 19% among adults (18 years of age and older) overall and 40% among those aged 60 years and older [4]. No one combination of abnormalities predominates. Those with MetS represent a high-risk group who can benefit from secondary prevention lifestyle interventions to alter the trajectory to development of CVD.

Lifestyle modification, consisting of dietary changes and increased physical activity, can be effective in modestly improving the metabolic abnormalities and reducing the prevalence of MetS [5]. Most of the published trials have used a combination of diet and exercise with a goal of ≥5% weight loss; however, the dietary interventions have varied considerably including a Mediterranean diet, the Dietary Approaches to Stop Hypertension (DASH) diet, and individually prescribed diets such as in the U.S. Diabetes Prevention Program (DPP) [5]. Evidence for a reduction in diabetes incidence has been demonstrated, but evidence for longer term changes in CVD morbidity and mortality is currently inconsistent and studies are ongoing [6, 7].

In Canada, practice guidelines developed by the Cardiometabolic Risk Working Group recommend health behaviour modification as the primary treatment strategy, consisting of counselling regarding physical activity, decreased caloric intake, and a diet based on Canada’s Food Guide [2]. Other practice guidelines developed for management of specific features of MetS include a lower sodium DASH diet to prevent and control hypertension [8]; a Mediterranean, Portfolio, or DASH diet to improve lipid profiles and decrease cardiovascular risk [9]; control of the types, amounts, and timing of carbohydrate (CHO) intake to improve blood glucose control in people with diabetes [10]; and lifestyle modification programs to achieve a modest weight loss [11].

The challenge of implementing these multiple practice guidelines in dietetic practice is compounded by the need to incorporate behavioural strategies and individualize counseling to promote long-term dietary change. A national demonstration project involving 300 patients across three provinces was planned, where local Registered Dietitians (RDs) provide intensive diet counselling (weekly for the first 3 months and monthly thereafter) in conjunction with medical management and physical activity training with a kinesiologist in team-based primary care practices (ClinicalTrials.gov Identifier: NCT01616563). This led to consideration of how to best represent key decisions involved in diet counselling for MetS, while supporting RDs in their individualized counselling. Care maps, process algorithms, and other similar decision aids are used in many health care contexts to provide a graphical representation of typical decision processes. In dietetics, some evidence-based nutrition practice guidelines include such tools to guide care [2]. We were unable to locate a published algorithm for diet counselling in MetS and therefore undertook development to guide RD practice in the planned demonstration project, building on our previous work in developing a dyslipidemia care map [13].

CARE MAP DEVELOPMENT PROCESS

Evidence review

A narrative literature review was conducted to identify dietary patterns and specific dietary components that impact metabolic abnormalities common to MetS. The review identified common dietary patterns promoted through the relevant practice guidelines for obesity, diabetes, hypertension and dyslipidemia (e.g., Canada’s Food Guide, Mediterranean diet, Portfolio Diet, DASH diet) [2, 8–11]; as well as evidence for specific diet components that could affect blood lipid profile or blood pressure [14] (see Table 1).

Review by dietitians

We first developed a draft version of the care map as a research group, and eight practicing RDs (from Quebec, Ontario, and Alberta) reviewed it for face validity. Several iterations of the care map were developed based on feedback from the RDs.

Heuristic evaluation

A specialist in heuristics (Knowledge Translation Consultation Service, St. Michael’s Hospital Toronto) examined the care map to assess how well it followed usability principles [15]. The document was examined for consistency, organization, clarity of information, aesthetics, layout, legibility, and structure of the text. Suggestions included: using common colour-coding and shapes to represent the same activity, numbering the steps in the process, and using solid box outlines to emphasize main decision points. After revising the care map, 10 additional RDs external to the project provided further anonymous paper review.

USING THE CARE MAP

The current version of the care map is shown in Figure 1, outlining the numbered steps and decision points to consider in managing MetS. The initial assessment and counselling to define client goals assumes one-on-one RD–client interaction. An explanation of the rationale and key points follows (the numbers correspond to numbered steps shown in the care map):

1. **Nutrition Assessment**

 In addition to standard nutritional assessment (i.e., anthropometric measurements, biochemical measures, weight history, and social/dietary history), assessment of intention and potential barriers to lifestyle change are considered when promoting weight loss and health behaviours [16, 17].

 Assess and address intention: Assessment of intention is core to the assessment of readiness for most behaviour change processes. The Transtheoretical Model (TTM) [18] is popular among health care practitioners as it explicitly focuses on the concept of “Stages of Change” (SOC), allowing for different approaches depending on the stage. In diet behaviour, the “stage” for one behaviour may be different than for another (e.g., eating more vegetables vs. avoiding salty foods). RDs indicated that assessing intention needs to be done at several points in the initial assessment and goal-setting phases as...
Perspectives in Practice

Table 1

Management of dyslipidemia or hypertension

<table>
<thead>
<tr>
<th>Metabolic abnormality</th>
<th>Diet/lifestyle therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated LDL-cholesterol</td>
<td>• Fat quality: decrease trans and saturated fat (<7%–10% of calories)(^a), increase monounsaturated fat (increase nuts(^b))
• Increase soluble fibre (10–25g/day)(^c)
• Increase plant sterols (2 g/day)(^d)
• Increase vegetables and fruit (7–10 servings/day according to age and sex)(^e)
• Increase plant protein (50 g/day soy protein)(^f)
• Portfolio diet(^g), Mediterranean diet(^h)
• Weight reduction if overweight
• Increase physical activity</td>
</tr>
<tr>
<td>Elevated triglycerides</td>
<td>• Balanced meals
• Regular meals
• Fat Quality: decrease trans and saturated fat(^a)
• Increase omega-3 fatty acid from fish or fish oil supplements (approximately 3 g/day EPA and/or DHA) can reduce serum triglyceride levels by 10–13% [41].
• Increase omega-3 fatty acids from fish or fish oil supplements (approximately 3 g/day EPA and/or DHA) can reduce serum triglyceride levels by 10–13% [41].
• Moderate alcohol intake (if triglycerides are not substantially elevated)(^i)
• Increase vegetables and fruit(^e)
• Increase plant protein(^f)
• Weight reduction if overweight
• Controlling blood sugars if prediabetes or diabetes present
• Increase physical activity</td>
</tr>
<tr>
<td>Low HDL-cholesterol</td>
<td>• Fat quality: decrease trans fat, increase monounsaturated and omega-3 fat(^a) (increase nuts(^b))
• Moderate alcohol intake (if triglycerides are not substantially elevated)(^i)
• Increase vegetables and fruit(^e)
• Increase plant protein(^f)
• Weight reduction if overweight
• Smoking cessation
• Increase physical activity</td>
</tr>
<tr>
<td>Elevated blood pressure</td>
<td>• Reduce sodium(^l):
 • ≤1500 mg (65 mmol)/day if ≤50 years of age
 • ≤1300 mg (57 mmol)/day if 51 to 70 years of age
 • ≤1200 mmol (52 mmol)/day if >70 years of age
• DASH eating plan (increase vegetables and fruit, increase fibre, increase nuts, increase low fat dairy)(^k)
• Moderate alcohol intake(^l)
• Weight reduction if overweight
• Increase physical activity</td>
</tr>
</tbody>
</table>

\(^a\)Fat quality: Reducing trans and saturated fat (SFA) (<7–10% of calories) can achieve reductions in LDL cholesterol (LDL-C) (up to 16%) and triglyceride levels (~8%) [38]. Replacing SFA with unsaturated fatty acids (PUFA or MUFA) rather than refined carbohydrates has been associated with reduced CVD risk [39, 40]. Omega-3 fatty acids from fish or fish oil supplements (approximately 3 g/day EPA and/or DHA) can reduce serum triglyceride levels by 10–13% [41].

\(^b\)Nuts: Consumption of 50–100g nuts five times or more per week can lower LDL-C (~7%) and triglyceride levels (~10%), particularly in individuals with elevated LDL-C and blood triglyceride levels [42]. The potential for weight gain is a concern if additional calories are not compensated for.

\(^c\)SFA with unsaturated fatty acids (PUFA or MUFA) rather than refined carbohydrates has been associated with reduced CVD risk [39, 40]. Omega-3 fatty acids from fish or fish oil supplements (approximately 3 g/day EPA and/or DHA) can reduce serum triglyceride levels by 10–13% [41].

\(^d\)Portfolios: Fruits and vegetable contributions to nutrient requirements and safety without adding substantial calories. Observational data provide consistent evidence to suggest that a diet rich in vegetables and fruits (more than five servings per day) is associated with ~20% decreased CVD risk [46]. Promotion of fruit and vegetables may be behaviourally easier than restricting calories or fat reduction.

\(^e\)Plant protein (soy protein): Intake of 30 g/day (2 servings) has been associated with a 4–5% reduction in LDL-C, 3% increase in HDL, and 10% decrease in triglyceride [47].

\(^f\)The Portfolio diet: This is a vegetarian diet that follows therapeutic lifestyle change guidelines and consists of plant sterols (1.0 g/1000 kcal), viscous fibres (10 g/1000 kcal), and almonds (23 g/1000 kcal). The Portfolio diet has been demonstrated to reduce LDL-C levels by about 29% in hypercholesterolemic subjects (comparable with statins) [35]; however, when implemented in a real-world setting with adherence rates of 0.0% to the various dietary components, 13% reductions in LDL-C were observed over 6 months [48]. Thus, on the basis of the reported intake of portfolio components, the authors report a 4% LDL-C reduction from viscous fibres, 2% each from nuts and soy, and 5% from plant sterols.

\(^g\)Mediterranean dietary pattern: This is characterized by the daily consumption of fruits, vegetables, whole grain breads, nonrefined cereals, olive oil (the primary source of added fat), and dairy products; moderate weekly consumption of fish, poultry, nuts, potatoes, and eggs; low monthly consumption of red meat; and daily moderate wine consumption. Studies conducted primarily in Mediterranean countries (limited studies have been implemented using this whole diet approach in North America) have shown that compared with a low fat diet, a Mediterranean dietary pattern can promote reductions in BMI (~0.5 kg/m²), systolic and diastolic blood pressure (~1.7 – 1.5 mm Hg), and total cholesterol (~0.19 mmol/L) [32].

\(^i\)Alcohol: Moderate alcohol intake (30 g/day) can result in increases in HDL-C (~8% increase) [49], but may also increase triglycerides in some people. For those who chose to drink alcohol, Canada’s Low-Risk Alcohol Drinking Guidelines apply (http://www.ccc.ca/Eng/Priorities/Alcohol/Canada-Low-Risk-Alcohol-Drinking-Guidelines/Pages/default.aspx).

\(^k\)Sodium: Reduce sodium to ≤2300 mg/day to lower blood pressure in individuals with hypertension [50]. A trial of salt reduction will likely be beneficial in most individuals with MetS given that average Canadians eat about 3400 mg of sodium daily [51].

\(^l\)DASH eating plan: This consists of a diet rich in fruit (4–5 servings/day), vegetables (4–5 servings/day), whole grains (6–8 servings/day grains; whole grains recommended for most servings); low-fat dairy (2–3 servings/day); lean meat, poultry, and fish (2 servings/day); unsaturated fats and oils (2–3 servings/day); nuts, seeds, and dried beans (4–5 times/week); limited sweets (≤5 g/week); an emphasis on dietary and soluble fibre (aiming for a total dietary fibre intake of ~30 grams/day), and a diet rich in potassium, calcium, and magnesium. The reduced sodium (≤2300 mg/day) DASH diet can lower systolic blood pressure by 11.5 mm Hg in individuals with hypertension [32].
discussion goes from considering overall lifestyle change to considering specifics of daily behaviour changes [19]. Intention can be assessed many ways, including simple questions like, “What do you think can be done or needs to be done to change xxx?” Possible counselling actions based on SOC are described in Table 2.

Assess and address potential facilitators and barriers to lifestyle change: Assessment of barriers is an important step to consider [16, 20]. Specific barriers can be assessed by direct enquiry or by impression during the interview. Barriers likely to impact dietary behaviour change are shown in Figure 1. By identifying barriers, the RD can engage in problem solving with clients and potentially improve the client’s chances of achieving desired changes.

2. Joint Goal Setting
Goal setting for specific diet behaviours is a negotiated process [21]. Joint goal setting considers the client’s priorities, motivations, current dietary and lifestyle behaviours, and areas of concern. We developed a resource to assist with joint goal setting that describes MetS and helps to identify key risk factors [22]. The RD can discuss and prioritize risk factors based on clinical recommendations and client preferences/beliefs. Goal setting is a 2-step process: first to identify the specific MetS risk factor(s) to be addressed and then to review possible diet strategies to address that risk factor. A joint goal setting worksheet may be helpful to identify goals and indicate what the RD and other support people can do to help achieve these goals. Additional practical and visually appealing counselling resources were also developed (i.e., controlling weight, controlling blood sugar, lowering blood pressure, increasing HDL-cholesterol, lowering LDL-cholesterol, and lowering triglycerides) to facilitate discussion during these conversations. These are available in Dietitians of Canada’s PEN online service [22].

Figure 1
Dietary management care map for metabolic syndrome

Dietary Management Care Map - Dietitian’s Quick Reference Guide

1. Nutrition Assessment
 - Assess intention
 - Assess barriers

2. Joint Goal Setting
 - Metabolic syndrome overview
 - Controlling weight
 - Controlling blood sugars
 - Lowering blood pressure
 - Increasing HDL cholesterol
 - Lowering LDL cholesterol
 - Lowering triglycerides

3. Overweight - Is weight loss feasible?
 - YES
 - NO

3a. Diabetes or Impaired Glucose Tolerance?
 - YES
 - NO

3b. Hypertension and/or Dyslipidemia?
 - YES
 - NO

4. Decrease calories
 - Snack choices
 - Balanced meals / portion control
 - Less fat and calories
 - Decrease added sugars
 - Meal / menu planning

4a. Control carbohydrate
 - Balanced meals
 - Decrease added sugars
 - Glycemic index
 - Carbohydrate counting
 - Meal / menu planning

4b. Additional strategies
 - Increase fruit & vegetables
 - Increase fibre / soluble fibre
 - Decrease added sugars
 - Fat quality
 - Plant sterols
 - Nuts
 - Plant protein / meatless meals
 - Low fat dairy
 - Low sodium
 - Meal / menu planning

5. Initial Counselling
 - Motivational interviewing:
 - active listening
 - Group education class
 - Group conversation maps

6. Planned Follow-up
 - Individual
 - Face-to-face
 - Phone / e-mail
 - Self-help
 - Group
 - Education / seminars
 - Conversation maps

Address Intention
- Decisional balance
- Behavioural strategies

Address Intention
- Decisional balance
- Behavioural strategies

Address Barsriers
- Low income
- Language
- Low literacy / numeracy
- Transportation
- Family responsibilities
- Adverse work schedule
- Cooking skills
- Social support
- Emotional eating
- Other

Behaveorial Strategies
- Cognitive behavioural therapy
- Goal setting
- Self-monitoring
- Reinforce lifestyle change
- Rewards
- Problem-solving
- Preventing relapse

*indicates motivational strategies to consider in counselling

Developed on behalf of the CHANGE Project - Contact Paula Brauer, PhD, RD pbrauer@uoguelph.ca
3. Overweight, is weight loss feasible?

Modest weight loss (mean <5%) has been shown to achieve clinically relevant changes in multiple MetS features in some people and is therefore considered first [5]. Calorie reduction or weight loss may not be desired or feasible in some individuals, particularly if barriers are present that can hamper lifestyle change or if the person has a history of weight cycling or disordered eating [23]. The potential for long term harms such as osteoporosis, disordered eating, and weight gain should also be considered [24–26].

Dietitians must use their judgment in determining if weight loss is desirable and/or feasible. Stubbs et al. [27] reported that there are few strong pretreatment predictors of weight loss. A few factors consistently predict successful weight loss (i.e., self-esteem, motivation, program participation), but previous weight loss attempts or previous weight cycling may or may not predict poor success at weight loss.

Many clients in dietetic practice also have unrealistic weight loss goals when starting treatment [28]. Because obesity is a chronic, relapsing condition that requires long-term management, it may be useful to incorporate the “5As” key messages developed by the Canadian Obesity Network into the discussion (www.obesitynetwork.ca/5As). It is important to consider the many individual factors that may affect successful weight loss, as considered by Sharma [29], and to tailor the approach accordingly.

If calorie reduction is not desirable or feasible, weight gain prevention may be a goal, and changes in MetS markers can still be achieved by focusing on other goals (sections 3a and 3b) and changing the types of foods in the diet (sections 4a and 4b). The two-way arrows shown between the dietary strategies in the care map (Figure 1) reflect the movement that can occur according to changes in clinical markers and client goals over time.

3a. Diabetes or impaired glucose tolerance (IGT): If weight loss is not desirable or feasible, the next step in the care map is assessing the presence of diabetes, prediabetes, or IGT. Control of CHO intake is a core feature of diabetes diet counselling to lower hemoglobin A1c levels and modestly improve the lipoprotein profile and blood pressure [10].

3b. Hypertension and/or dyslipidemia: If blood glucose control is not a primary focus, dietary changes can affect the dyslipidemia and hypertension often seen with MetS. The most common lipid abnormalities associated with MetS are elevated triglyceride levels and low HDL-C levels [2]. Serum LDL-C levels are usually either normal or mildly elevated in individuals with MetS, whereas plasma apolipoprotein B concentration and the number of small dense LDL particles are often increased. If elevated, LDL-C is still the main target of therapy for individuals with dyslipidemia [9]. Once a major focus has been decided, there are a large number of diet changes to be considered, as outlined in the next series of boxes.

4. Decrease calories (if weight loss is feasible)

The methods and tools to decrease caloric intake include promoting meal/snack regularity along with balanced meals and...
over the first 3 months, with monthly follow-up to 12 months.

In the demonstration project, active intervention takes place

6. Planned follow-up

In the demonstration project, active intervention takes place

Portion control; these are basic concepts that may be beneficial

6. Planned follow-up

In the demonstration project, active intervention takes place

behavioural strategies to achieve positive dietary behaviour change and ameliorate MetS abnormalities. Although several complete packages of diets have been used (e.g., DPP, DASH), currently few diet counselling studies exist that directly compare more than two sets of behavioural strategies. Such studies are needed to refine the features of the care map. In the meantime, the care map and a companion resource list has been developed that identifies some “best available” resources to support specific dietary strategies. These resources are available upon request from the corresponding author.

Acknowledgements

This project was supported by a donation from the St Joseph’s Hospital Foundation.

References

